Monkey's brain signals control robot

Pulses travel over the net in trial

Scientists in the US and Japan have successfully used a monkey's brain activity to control a humanoid robot — over the internet.

This research may only be a few years away from helping paralysed people walk again by enabling them to use their thoughts to control exoskeletons attached to their bodies, according to Miguel Nicolelis, a professor of neurobiology at Duke University in North Carolina and lead researcher on the project.

"This is an attempt to restore mobility to people," says Nicolelis. "We had the animal trained to walk on a treadmill. As it walked, we recorded its brain activity that generated its locomotion pattern. As the animal was walking and slowing down and changing his pattern, his brain activity was driving a robot in Japan in real time."

Nicolelis said he has been working on this research project for 10 years.

A year ago, doctors implanted 64 electrodes and a computer chip into the brains of two rhesus monkeys. Then earlier this month, the group was ready to start recording electrical signals from 200 of the animal's brain cells as it walked on a treadmill.

Those signals were transmitted over the internet to scientists at the Computational Brain Project of the Japan Science and Technology Agency, where researchers fed the information into a humanoid robot that immediately began to respond to the monkey's brain activity — walking at the same pace, slowing down when the monkey slowed, and changing its walking pattern to exactly match the animal's.

"It normally takes 250 milliseconds for the brain to create a signal and for the leg to move," says Nicolelis. "In that same time interval, we were able to send the signal to Japan and get a video loop back showing the robot responding to the thoughts.... If this was happening in a patient, it would be very quick. The patient wouldn't notice any time lag. It would feel like moving your own leg."

Nicolelis also noted that the monkey was watching the video of the corresponding robot and seemed amused that the robot was mimicking its movements. "As he changed his speed or pattern, he was watching the robot change as well," he added. "He was pretty happy, yeah. Plus, he was getting fruits and Cheerios as a reward."

The Duke University professor says it was very significant that the electrodes and chip worked so well a year after being surgically implanted in the monkey.

"There have been a lot of difficulties maintaining recordings with other technologies," he says. "With this, we have completed a year, and that shows you can sustain viable implants without any harmful impact to the animal or the brain of the animal. That's a key issue for future patients."

For this to work on a human, Nicolelis says, electrodes and a computer chip would be implanted in the patient's brain. The electrodes would wirelessly transmit information to the chip, which would broadcast the brain signals to a device attached to the person's body. The device would be a carbon fibre exoskeleton that would wrap around the legs, and it would move in correspondence to the person's own brain activity.

Nicolelis says clinical trials on humans should begin within a few years.

In December, a scientist who successfully connected a moth's brain to a robot predicted that in 10-15 years we will be using "hybrid" computers running a combination of technology and living organic tissue.

Charles Higgins, an associate professor at the University of Arizona, built a robot that is guided by the brain and eyes of a moth. Higgins says he straps a hawk moth to the robot and then puts electrodes in the neurons that deal with sight in the moth's brain. Then the robot responds to what the moth is seeing — when something approaches the moth, the robot moves out of the way.

Join the newsletter!


Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags technologyDuke Universitynicolelismonkeybrain waves

Show Comments